Bootstrap nonlinear prediction.
نویسندگان
چکیده
Estimating the Jacobian matrix of a nonlinear dynamical system through observed time-series data is one of the important steps in predicting future states of the time series. The Jacobian matrix is estimated using local information about divergences of nearby trajectories. Although the basic algorithm for estimating the Jacobian matrix generally works well, it often fails for short or noisy data series. In this paper, we proposed a scheme to effectively use near-neighbor information for more accurate estimation of the Jacobian matrix using the bootstrap resampling method. Then, to confirm the validity of the proposed method, we applied it to a mathematical model and several real time series. As a result, we confirmed that the proposed method greatly improves nonlinear predictability, not only for noise-corrupted mathematical models but also for real time series.
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملOptimal selection of model order for a class of nonlinear systems using the bootstrap
Nonlinear system identi cation involves selecting the order of the given model based on the input-output data. A bootstrap model selection procedure which selects the model by minimising bootstrap estimates of the prediction error is developed. Bootstrap based model selection procedures are attractive because the bootstrap observations generated for the model selection can also be used in subse...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملBootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions
In order to construct prediction intervals without the cumbersome—and typically unjustifiable—assumption of Gaussianity, some form of resampling is necessary. The regression set-up has been well-studied in the literature but time series prediction faces additional difficulties. The paper at hand focuses on time series that can be modeled as linear, nonlinear or nonparametric autoregressions, an...
متن کاملBootstrap prediction intervals for Markov processes
Given time series data X1, . . . , Xn, the problem of optimal prediction of Xn+1 has been well-studied. The same is not true, however, as regards the problem of constructing a prediction interval with prespecified coverage probability for Xn+1, i.e., turning the point predictor into an interval predictor. In the past, prediction intervals have mainly been constructed for time series that obey a...
متن کاملNeural network sieve bootstrap prediction intervals for hydrological time series
When analyzing time series data, the estimation of forecast intervals, based on an observed sample path of the process, is a key issue. If the process is linear and the distribution of the error process is known, the methodology is well developed but, for departures from the true underlying distribution, the prediction intervals perform poorly. In this latter case several distribution free alte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2007